Seeing is Believing
Data Visualization in Multi-Device Apps with RAD Studio – Ray Konopka
Conveying the meaning of data quickly and concisely is a focal point of today's applications. This is especially true for mobile devices where real-estate and user attention are in short supply. Delphi/C++ and the FM Application Platform, along with native code performance, provide the tools necessary to create vibrant, information rich displays leveraging data visualization techniques and infographics. Along with access to standard libraries and 2D/3D graphics support, the extensible FM Application Platform allows developers to reuse their custom data visualizations by creating new FM controls.
Throughout this presentation, we will be investigating many of the capabilities of the FM Application Platform involved in data visualization. We will cover the important role that FM primitives and vector graphics play in visualizing data. We will take a look at charting and how we can incorporate modern looking charts into our own applications. We will also be taking a deep dive into customized lists on mobile devices and leveraging custom FM controls to achieve very rich displays. And finally, we will investigate how to create truly stunning hi-res images generated from mathematical data.
Data Visualization
Before we delve into the specific examples, it is important to have an understanding of just what we mean when we use the term data visualization. As its name suggests, data visualization leverages our visual system for the communication of information. The old adage “a picture is worth a thousand words” is an accurate way to describe what is taking place. That is, the appropriate use of graphics and imagery can convey an enormous amount of information very quickly.
Effective data visualizations do more than just present information. They can inspire new questions and encourage further exploration. They can be used to help identify trends and patterns. Data Visualizations generally fall into two categories: exploratory or explanatory.
Exploratory data visualizations are used in situations when there is no clear understanding of what conclusions can be drawn from the data. These types of visualizations are often interactive in that they allow the reader/viewer to “explore” the data or subsets of the data. A common goal of exploratory visualizations is to identify trends and patterns in the data.
Explanatory data visualizations are used in situations where the author (or designer) has already analyzed the data and is now trying to explain the results. These types of visualizations are generally static and are often designed in such a way to emphasize the position the author wants to convey.
Data Visualization Techniques
For many developers, Data Visualization is an advanced, specialized topic that is only required in certain circumstances. However, except for the most trivial of applications, every developer needs to visualize data in their applications. As we proceed through the following list, think of how you might apply these visualization techniques in your own applications.
Labels, Tables, and Lists
Yes, labels--arguably the most common data visualization technique used in software. Text based tables and lists also fall into this category. These text based visualizations are extremely simple to use and very affective. However, they are rather plain and as the volume increases their effectiveness decreases.
Charts & Graphs
While text based visualizations may be the most common, it is the Bar Chart that is most often associated with Data Visualization. Bar Charts are very effective at comparing discrete data values within or across categories. The Pie Chart is the visually flashy cousin to the Bar Chart. An effective way to compare parts of a whole with a low degree of precision, care must be taken to ensure that Pie Charts are only used in situations where you are indeed trying to compare parts to a whole. Consider this, every Pie Chart can be converted into a Bar Chart, but not every Bar Chart can be converted into a Pie Chart.
Line Graphs are another relative of the Bar Chart. Instead of displaying bars representing a value, just a point is displayed for each value. However, the points in a series are usually connected to show a trend. This makes line graphs very effective in comparing one or more sets of continuous data values.
Hi-Resolution Imaging
Some datasets are best visualized as an image rather than individual data points. For example, X-Rays, CT Scans, MRIs, etc. Hi-Resolution displays and appropriate use of color provide exceptional detail to two dimensional data.
Relational Diagrams
For some data sets, there are intrinsic relationships between data values. For these situations, a relational diagram is more appropriate. For example, trees, network diagrams, data flow diagrams, ER diagrams, and flow charts.
Maps
When dealing with geographic data, it is natural to consider displaying that data on map, especially if the data that is being visualized is related to the spatial properties of the map. For example, population, voting districts, etc. However, just because a dataset contains a geographic element that does not necessary mean that a map is the most effective. For example, sales figures for a company’s East Coast, Midwest, and West Coast divisions do not necessary gain much from being displayed on a map of the United States.
What about Infographics?
When discussing data visualization, it is very common to hear the term infographics. In fact, in some contexts, the two terms are used interchangeably. However, there is a growing consensus that there are differences between the two.
Infographics, short for information graphics, are typically manually drawn usually with graphics design software. As a result, infographics utilize visual effects to create a visually stunning display. An infographic is concerned with a specific set (or subset) of data values, and only that set of values. Using a different set of data would require manually recreating the presentation.
Data Visualizations, on the other hand, are typically drawn using an automated process that can easily handle varying sets of data values. Data visualizations also generally handle larger volumes of data than an infographic. This makes sense because an automated process can handle large volumes of data much more effectively and a manual process. Data Visualizations sacrifice some of the visual flair of infographics, but they counter that with greater data precision.
Overview of FM Primitives
Before we move onto the actual examples, there is one more topic that needs to be covered: FM Primitives. At the very core of the FM Framework are the FM Primitives, which are vector based controls designed for displaying content. Every style in every control in FM makes use of the FM Primitives. They are truly the building blocks of FM. Figure 1 shows a few of the primitives on an HD form.
The screen shot shows the TRectangle, TLine, and TPie controls in action. Each primitive is responsible for displaying a primitive shape. For shapes that are closed, there is a Fill property can controls how the interior of the shape is filled. Likewise, there is a Stroke property that defines how the outline of the control is drawn.
The pie pieces are all contained inside a TLayout control. Think of the TLayout as a TPanel control but without the visual representation. It is another core class in the FM Application Platform. In this example, I am using the layout to group all of the pie pieces together.
The important feature of the FM Primitives with respect to data visualization is that all of the shapes are vector-based and not raster-based. This means that as we adjust the size of the shapes, we do not lose any fidelity in their appearance. This is not true with raster based displays. As a result, if we resize the layout that contains all 4 pie pieces, all of the pie pieces get scaled automatically.
[image:]
Figure 1: The FM Primitives
Another very useful primitive in FM is the TPath. The control allows you to specify a custom shape that is defined by a set of points that are connected using curves. Many examples that you see on the web add points to a path programmatically, which, unfortunately, can be cumbersome. Fortunately, it is possible to initialize a path at design-time using an SVG file. However, the steps are not really obvious.
Figure 2 shows the property editor for the TPath.Data property. Unfortunately, the “Type pathData (like SVG or XAML):” is not really helpful. It would appear that you could paste the contents of an SVG file into this property editor, but that will not work. Instead, you have to select a specific portion of the SVG file.
[image:]
Figure 2: Editing Path Data
Listing 1 shows a sample SVG file that I created in a vector graphics application, specifically CorelDRAW, but Adobe Illustrator could also be used. To use the data in this SVG file in the TPath control, select just the data elements as shown in the highlighted text. Those elements can then be copied to the clipboard and then pasted into the TPath.Data property editor. Figure 3 shows the results.
	Listing 1: Sample SVG File

	<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<!-- Creator: CorelDRAW X6 -->
<svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" width="4.00346in" height="4.00346in" version="1.1" style="shape-rendering:geometricPrecision; text-rendering:geometricPrecision; image-rendering:optimizeQuality; fill-rule:evenodd; clip-rule:evenodd"
viewBox="0 0 4003 4003"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <defs>
 <style type="text/css">
 <![CDATA[
 .fil0 {fill:red}
]]>
 </style>
 </defs>
 <g id="Layer_x0020_1">
 <metadata id="CorelCorpID_0Corel-Layer"/>
 <path class="fil0" d="M2002 0c1105,0 2001,896 2001,2002 0,1105 -896,2001 -2001,2001 -1106,0 -2002,-896 -2002,-2001 0,-1106 896,-2002 2002,-2002zm1552 2002c0,857 -695,1552 -1552,1552 -857,0 -1552,-695 -1552,-1552l3104 0z"/>
 </g>
</svg>

[image:]
Figure 3: Custom Path Data
In many respects, the primitives in FM are very similar to primitives in vector design tools such as Adobe Illustrator and CorelDRAW. As a result, we can blur the lines between data visualization and infographics by providing enhanced visual effects even in our algorithmically drawn visualizations. We will be leveraging the FM Primitives extensively when we get to the Ratings Mobile Application after the next section.
Customizing the Appearance of TChart
As I noted earlier, charting is a very common form of data visualization. Fortunately, Delphi comes with a TChart component, which is part of the TeeChart Lite product by Steema Software. Don’t be fooled by the “lite” designation. There is a lot of functionality that is available in TChart.
Unfortunately, the default appearance of data presented by TChart is a bit dated. For example, consider Figure 4. The Bar Chart in the upper right is the default appearance. The chart on the upper left has been customized to provide a more modern appearance. The key to modifying a TChart is to select Edit Chart from the context menu. The dialog that is displayed provides many, many options for customizing the appearance.
[image:]
Figure 4: TChart examples
For example, click on the Chart > 3D node in the side tree and then uncheck the “3 Dimensions” check box. Next click on the Chart > Walls node in the side tree and uncheck the “Visible Walls” check box at the top of the editor. Next, to have the background color of the chart match the form, we need to click on Chart > Panel and click the Default check box. To remove the border of the panel, on this same page, click on the Borders tab and select None for the Bevel outer. Click on the Chart > Legend node to modify the legend box. For example, we can hide it. And finally, we can click on the Series > Series N node in the side tree. This allows us to modify various settings related to the data that is being charted. For example to remove the labels that appear above each bar, we simply have to switch to the Marks tab for the selected series and then uncheck the Visible check box.
Ratings Mobile Application
In this section, we are going to be taking an in depth look at ways we can customize the appearance of items in a list. The goal, of course, is to provide a more effective visualization of the data being presented. That data is going to be product ratings. If you are familiar with Consumer Reports magazine in the United States, then you have undoubtedly seen one of their ratings lists. Consumer Reports reviews and rates all kinds of consumer products, from cars to computers to power drills to food processors. As you can imagine, there is a lot of data that is involved, and much of it is tabular. However, Consumer Reports does not just relay on simple text tables to present results.
Ratings 1
The sample app that we will be working with in this section is a mobile Ratings app inspired by Consumer Reports. The actual ratings data we will be using is for Food Processors, but the actual data is not that important. What is important is the method by which we will display that data.
Figure 5 shows the main form for the Ratings1 mobile app for the iPhone. The app simply consists of a title bar (a list box header) and a TListBox. When the application starts, the products in the cdsRatings client dataset will be loaded into the lstRatings list box.
[image:]
Figure 5: Ratings Mobile App
The default appearance of a TListBox is to simply display the text of the item. However, there is a lot more data associated with a product’s rating than just a name. In this example, each food processor has a brand and model, cost, an overall score, and individual ratings for chopping, slicing, shredding, pureeing, grating, and noise. In order to display all of this information for each product in the list, we need to create a custom style.
Figure 6 shows the RatingsHeaderItem style selected in the Style Designer. The Style Designer is invoked by dropping a TStyleBook component onto the form and double clicking the component. The Structure Pane in the IDE is used to navigate between the various controls that are used in the style. In this example, the TLayout component is used to manage the positioning of several TText controls and other TLayout controls.
The actual steps needed to create this custom style are beyond the scope of this paper, but the full source for the application including the custom styles is available on CodeCentral.
[image:]
Figure 6: Custom Header Style
You may have noticed that the RatingsHeaderItem style is pretty wide and that it will not fit on an iPhone that is in portrait orientation. That’s okay, because we are going to adjust the style based on the orientation. When the phone is in portrait mode, we will hide some of the columns and shorten the Overall Score column.
Figure 7 shows the RatingsListItem style. The list box will be displaying just one header item (the first one in the list), but the list box will be displaying many items with the RatingsListItem style applied. Furthermore, the data values displayed for each list item line up with the titles in the header style. Again, if the phone is oriented in portrait, some of the columns will be hidden.
[image:]
Figure 7: Custom List Item Style
Listing 2 shows the source code for the Ratings1 main form. In FormCreate event handler, LoadRatings is called to populate the list box. LoadRatings first creates a new TListBoxItem to represent the header. After the item is created, the OnApplyStyleLookup event is hooked up to the ListItemApplyStyleLookupHandler method. Then the item’s StyleLookup property is set to RatingsHeaderItemStyleName which maps to the StyleName of the custom style we created.
The OnApplyStyleLookup event is handled so that the style can be adjusted based on the orientation of the device. As noted earlier, if the device is in portrait mode, some of the ratings will be hidden.
LoadRatings then iterates through the client dataset and for each record creates a new TListBoxItem and like the header item, assigns the OnApplyStyleLookup event. The item’s StyleLookup property is then assigned to RatingsListItemStyleName, which maps to the StyleName of the custom style we created for the items.
In addition, the actual rating information needs to be added to the item. This is done using the StylesData array property of the TListBoxItem. StylesData operates like an array but we index the array with the StyleName of the element in the style we want to modify. StylesData[] returns a TValue, which is a record type that knows how to convert between many different data types. The TFmxObject class defines a Data property that descendant classes can override to provide a generic method of updating an object’s primary property value. For example, for text-based controls, the Data property will map to the Text property, but for the TCalendar, Data maps to the Date property.
	Listing 2: Ratings1MainForm.pas

	unit Ratings1MainForm;

interface

uses
 System.SysUtils,
 System.Types,
 System.UITypes,
 System.Classes,
 System.Variants,
 FMX.Types,
 FMX.Objects,
 FMX.Controls,
 FMX.Forms,
 FMX.Dialogs,
 FMX.Layouts,
 FMX.ListBox,
 FMX.StdCtrls,
 Data.DB,
 Datasnap.DBClient;

type
 TfrmMain = class(TForm)
 lstRatings: TListBox;
 cdsRatings: TClientDataSet;
 CustomStyles1: TStyleBook;
 ListBoxHeader1: TListBoxHeader;
 Label2: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure FormResize(Sender: TObject);
 private
 procedure LoadRatings;
 procedure ListItemApplyStyleLookupHandler(Sender: TObject);

 function FormIsPortrait: Boolean;
 public
 end;

var
 frmMain: TfrmMain;

implementation

{$R *.fmx}

uses
 iOSApi.UIKit;

const
 RatingsListItemStyleName = 'RatingsListItem';
 RatingsHeaderItemStyleName = 'RatingsHeaderItem';

 txtBrandStyleName = 'txtBrand';
 txtModelStyleName = 'txtModel';
 txtCostStyleName = 'txtCost';
 txtOverallScoreStyleName = 'txtOverallScore';
 txtChoppingStyleName = 'txtChopping';
 txtSlicingStyleName = 'txtSlicing';
 txtShreddingStyleName = 'txtShredding';
 txtPureeingStyleName = 'txtPureeing';
 txtGratingStyleName = 'txtGrating';
 txtNoiseStyleName = 'txtNoise';

 layOverallScoreStyleName = 'layOverallScore';
 layChoppingStyleName = 'layChopping';
 laySlicingStyleName = 'laySlicing';
 layShreddingStyleName = 'layShredding';
 layPureeingStyleName = 'layPureeing';
 layGratingStyleName = 'layGrating';
 layNoiseStyleName = 'layNoise';

procedure TfrmMain.FormCreate(Sender: TObject);
begin
 LoadRatings;
end;

procedure TfrmMain.LoadRatings;
var
 I: Integer;
 Item: TListBoxItem;
begin
 lstRatings.Clear;

 // Add Header Item

 Item := TListBoxItem.Create(lstRatings);
 Item.Parent := lstRatings;
 Item.Height := 70;

 Item.OnApplyStyleLookup := ListItemApplyStyleLookupHandler;
 Item.StyleLookup := RatingsHeaderItemStyleName;

 // Add Product Items

 cdsRatings.First;
 for I := 1 to cdsRatings.RecordCount do
 begin
 Item := TListBoxItem.Create(lstRatings);
 Item.Parent := lstRatings;
 Item.Height := 50;

 Item.OnApplyStyleLookup := ListItemApplyStyleLookupHandler;
 Item.StyleLookup := RatingsListItemStyleName;

 Item.StylesData[txtBrandStyleName] := cdsRatings.FieldByName('Brand').AsString;
 Item.StylesData[txtModelStyleName] := cdsRatings.FieldByName('Model').AsString;
 Item.StylesData[txtCostStyleName] := '$' + cdsRatings.FieldByName('Cost').AsString;
 Item.StylesData[txtOverallScoreStyleName] := cdsRatings.FieldByName('OverallScore').AsInteger;
 Item.StylesData[txtChoppingStyleName] := cdsRatings.FieldByName('Chopping').AsInteger;
 Item.StylesData[txtSlicingStyleName] := cdsRatings.FieldByName('Slicing').AsInteger;
 Item.StylesData[txtShreddingStyleName] := cdsRatings.FieldByName('Shredding').AsInteger;
 Item.StylesData[txtPureeingStyleName] := cdsRatings.FieldByName('Pureeing').AsInteger;
 Item.StylesData[txtGratingStyleName] := cdsRatings.FieldByName('Grating').AsInteger;
 Item.StylesData[txtNoiseStyleName] := cdsRatings.FieldByName('Noise').AsInteger;

 cdsRatings.Next;
 end;
end;

procedure TfrmMain.ListItemApplyStyleLookupHandler(Sender: TObject);
var
 Item: TListBoxItem;
 C: TControl;
 Portrait: Boolean;

 procedure UpdateStyleElement(Item: TListBoxItem; const StyleName: string; HideElement: Boolean);
 var
 C: TControl;
 begin
 C := Item.FindStyleResource(StyleName) as TControl;
 if C <> nil then
 C.Visible := not HideElement;
 end;

begin
 Item := TListBoxItem(Sender);

 Portrait := FormIsPortrait;

 C := Item.FindStyleResource(layOverallScoreStyleName) as TControl;
 if C <> nil then
 begin
 if Portrait then
 C.Width := 60
 else
 C.Width := 90;
 end;

 // Hide all ratings
 UpdateStyleElement(Item, layChoppingStyleName, True);
 UpdateStyleElement(Item, laySlicingStyleName, True);
 UpdateStyleElement(Item, layShreddingStyleName, True);
 UpdateStyleElement(Item, layPureeingStyleName, True);
 UpdateStyleElement(Item, layGratingStyleName, True);
 UpdateStyleElement(Item, layNoiseStyleName, True);

 // Show only those that apply to orientation
 UpdateStyleElement(Item, layNoiseStyleName, Portrait);
 UpdateStyleElement(Item, layGratingStyleName, False);
 UpdateStyleElement(Item, layPureeingStyleName, False);
 UpdateStyleElement(Item, layShreddingStyleName, Portrait);
 UpdateStyleElement(Item, laySlicingStyleName, False);
 UpdateStyleElement(Item, layChoppingStyleName, Portrait);
end;

function TfrmMain.FormIsPortrait: Boolean;
var
 Orientation: Cardinal;
begin
 Orientation := TUIApplication.Wrap(TUIApplication.OCClass.sharedApplication).statusBarOrientation;
 Result := not (Orientation in [UIDeviceOrientationLandscapeLeft, UIDeviceOrientationLandscapeRight]);
end;

procedure TfrmMain.FormResize(Sender: TObject);
begin
 LoadRatings;
end;

end.

The ListItemApplyStyleLookupHandler calls the FormIsPortrait helper function, which uses the application’s statusBarOrientation setting to determine if the device is in portrait orientation. Next, the individual ratings style elements are updated. Note that all of the elements for the ratings columns are hidden and then reset based on the Portrait setting. This is because the elements are aligned to the right in the item style. And just like the VCL, when you hide and show controls that are aligned, it is possible that their order can get mixed up when you make the control visible again. The code in Listing 2 ensures that the columns remain in their correct order.
Figure 8 shows the Ratings1 app running on the iPhone Simulator. Since the device is in portrait mode, only the Slicing, Pureeing, and Grating ratings are visible and the Overall Score value is thinner. However, all that we see are numbers, and although the order appears to be based on Overall Score, it is not very clear as to why one processor scored better than others.
[image:]
Figure 8: Ratings1 running on the iPhone Simulator
This is the problem with text based visualizations. The table data is very precise, but for the purpose of this application, data precision does not really help the user. Fortunately, we can customize out item style to be more visual and as a result convey much more information more quickly to the user. This is what we do in Ratings2.
Ratings 2
Figure 9 shows the Style Designer editing the TStyleBook for the Ratings2 application. The StyleBook contains several more styles than Ratings1. Specifically, there are separate style entries representing the different ratings levels (1-5). Each rating level is defined using a TLayout and each layout contains a TPath primitive, which has been loaded with the data from a custom SVG file. The various ratings match the appearance of the Consumer Reports circles that are used for ratings. In addition, rather than display just a number for the overall score, a bar will be displayed.
[image:]
Figure 9: Custom List Item Style for Ratings 2
The challenge in setting up this new style is that in Ratings1, TText controls were used to display the individual ratings values and overall score. However, TText controls cannot be styled. They are primitives. Therefore, for Ratings2, we need to replace the TText controls with TLabel controls, which can be styled.
For the overall score, we use a TProgressBar because that is closer to what we want to display. Inside the StyleBook, we create RatingsScoreBar style, which is defined to match the style elements that are expected to be present by the TProgressBar class. This way, when we set the progress bar’s StyleLookup property to the custom RatingsScoreBar style, the control will be displayed correctly.
However, we cannot simply assign the StyleLookup property for the ratings label controls because these will need to change depending on what rating value is actually assigned for that item. Listing 3 shows the source code for the Ratings2MainForm.pas unit. It is very similar to the main form for Ratings1. The notable changes are highlighted in blue in the source listing.
The first change is the list of constants used to identify the style elements. Because the TText controls were changed to TLabel controls, the constant names were updated. Next, the LoadRatings method was modified so that after each rating value was assigned to the appropriate StylesData element, the new UpdateItemRating method is called. UpdateItemRating looks at the Text value of the style element (Data maps to Text in TLabel controls), to determine the correct style to assign to the StyleLookup property. UpdateItemRating is also called at the end of the ListItemApplyStyleLookupHandler method to ensure the correct rating style is used for the values of the item.

	Listing 3: Ratings2MainForm.pas

	unit Ratings2MainForm;

interface

uses
 System.SysUtils,
 System.Types,
 System.UITypes,
 System.Classes,
 System.Variants,
 FMX.Types,
 FMX.Objects,
 FMX.Controls,
 FMX.Forms,
 FMX.Dialogs,
 FMX.Layouts,
 FMX.ListBox,
 FMX.StdCtrls,
 Data.DB,
 Datasnap.DBClient;

type
 TfrmMain = class(TForm)
 lstRatings: TListBox;
 cdsRatings: TClientDataSet;
 CustomStyles2: TStyleBook;
 ListBoxHeader1: TListBoxHeader;
 Label2: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure FormResize(Sender: TObject);
 private
 procedure LoadRatings;
 procedure ListItemApplyStyleLookupHandler(Sender: TObject);
 procedure UpdateItemRating(Item: TListBoxItem; const StyleName: string);

 function FormIsPortrait: Boolean;
 public
 end;

var
 frmMain: TfrmMain;

implementation

{$R *.fmx}

uses
 iOSApi.UIKit;

const
 RatingsListItemStyleName = 'RatingsListItem';
 RatingsHeaderItemStyleName = 'RatingsHeaderItem';

 txtBrandStyleName = 'txtBrand';
 txtModelStyleName = 'txtModel';
 txtCostStyleName = 'txtCost';
 pbrOverallScoreStyleName = 'pbrOverallScore';
 lblChoppingStyleName = 'lblChopping';
 lblSlicingStyleName = 'lblSlicing';
 lblShreddingStyleName = 'lblShredding';
 lblPureeingStyleName = 'lblPureeing';
 lblGratingStyleName = 'lblGrating';
 lblNoiseStyleName = 'lblNoise';

 layOverallScoreStyleName = 'layOverallScore';
 layChoppingStyleName = 'layChopping';
 laySlicingStyleName = 'laySlicing';
 layShreddingStyleName = 'layShredding';
 layPureeingStyleName = 'layPureeing';
 layGratingStyleName = 'layGrating';
 layNoiseStyleName = 'layNoise';

procedure TfrmMain.FormCreate(Sender: TObject);
begin
 LoadRatings;
end;

procedure TfrmMain.LoadRatings;
var
 I: Integer;
 Item: TListBoxItem;
 L: TLabel;
begin
 lstRatings.Clear;

 // Add Header Item

 Item := TListBoxItem.Create(lstRatings);
 Item.Parent := lstRatings;
 Item.Height := 70;

 Item.OnApplyStyleLookup := ListItemApplyStyleLookupHandler;
 Item.StyleLookup := RatingsHeaderItemStyleName;

 // Add Product Items

 cdsRatings.First;
 for I := 1 to cdsRatings.RecordCount do
 begin
 Item := TListBoxItem.Create(lstRatings);
 Item.Parent := lstRatings;
 Item.Height := 50;

 Item.OnApplyStyleLookup := ListItemApplyStyleLookupHandler;
 Item.StyleLookup := RatingsListItemStyleName;

 Item.StylesData[txtBrandStyleName] := cdsRatings.FieldByName('Brand').AsString;
 Item.StylesData[txtModelStyleName] := cdsRatings.FieldByName('Model').AsString;
 Item.StylesData[txtCostStyleName] := '$' + cdsRatings.FieldByName('Cost').AsString;
 Item.StylesData[pbrOverallScoreStyleName] := cdsRatings.FieldByName('OverallScore').AsInteger;

 Item.StylesData[lblChoppingStyleName] := cdsRatings.FieldByName('Chopping').AsInteger;
 UpdateItemRating(Item, lblChoppingStyleName);

 Item.StylesData[lblSlicingStyleName] := cdsRatings.FieldByName('Slicing').AsInteger;
 UpdateItemRating(Item, lblSlicingStyleName);

 Item.StylesData[lblShreddingStyleName] := cdsRatings.FieldByName('Shredding').AsInteger;
 UpdateItemRating(Item, lblShreddingStyleName);

 Item.StylesData[lblPureeingStyleName] := cdsRatings.FieldByName('Pureeing').AsInteger;
 UpdateItemRating(Item, lblPureeingStyleName);

 Item.StylesData[lblGratingStyleName] := cdsRatings.FieldByName('Grating').AsInteger;
 UpdateItemRating(Item, lblGratingStyleName);

 Item.StylesData[lblNoiseStyleName] := cdsRatings.FieldByName('Noise').AsInteger;
 UpdateItemRating(Item, lblNoiseStyleName);

 cdsRatings.Next;
 end;
end;

procedure TfrmMain.ListItemApplyStyleLookupHandler(Sender: TObject);
var
 Item: TListBoxItem;
 C: TControl;
 Portrait: Boolean;

 procedure UpdateStyleElement(Item: TListBoxItem; const StyleName: string; HideElement: Boolean);
 var
 C: TControl;
 begin
 C := Item.FindStyleResource(StyleName) as TControl;
 if C <> nil then
 C.Visible := not HideElement;
 end;

begin
 Item := TListBoxItem(Sender);

 Portrait := FormIsPortrait;

 C := Item.FindStyleResource(layOverallScoreStyleName) as TControl;
 if C <> nil then
 begin
 if Portrait then
 C.Width := 60
 else
 C.Width := 90;
 end;

 // Hide all ratings
 UpdateStyleElement(Item, layChoppingStyleName, True);
 UpdateStyleElement(Item, laySlicingStyleName, True);
 UpdateStyleElement(Item, layShreddingStyleName, True);
 UpdateStyleElement(Item, layPureeingStyleName, True);
 UpdateStyleElement(Item, layGratingStyleName, True);
 UpdateStyleElement(Item, layNoiseStyleName, True);

 // Show only those that apply to orientation
 UpdateStyleElement(Item, layNoiseStyleName, Portrait);
 UpdateStyleElement(Item, layGratingStyleName, False);
 UpdateStyleElement(Item, layPureeingStyleName, False);
 UpdateStyleElement(Item, layShreddingStyleName, Portrait);
 UpdateStyleElement(Item, laySlicingStyleName, False);
 UpdateStyleElement(Item, layChoppingStyleName, Portrait);

 // Update Rating Icons

 if Item.StyleLookup = RatingsListItemStyleName then
 begin
 UpdateItemRating(Item, lblChoppingStyleName);
 UpdateItemRating(Item, lblSlicingStyleName);
 UpdateItemRating(Item, lblShreddingStyleName);
 UpdateItemRating(Item, lblPureeingStyleName);
 UpdateItemRating(Item, lblGratingStyleName);
 UpdateItemRating(Item, lblNoiseStyleName);
 end;
end;

procedure TfrmMain.UpdateItemRating(Item: TListBoxItem; const StyleName: string);
var
 L: TLabel;
begin
 L := Item.FindStyleResource(StyleName) as TLabel;
 if L <> nil then
 L.StyleLookup := 'RatingLevel' + L.Text;
end;

function TfrmMain.FormIsPortrait: Boolean;
var
 Orientation: Cardinal;
begin
 Orientation := TUIApplication.Wrap(TUIApplication.OCClass.sharedApplication).statusBarOrientation;
 Result := not (Orientation in [UIDeviceOrientationLandscapeLeft, UIDeviceOrientationLandscapeRight]);
end;

procedure TfrmMain.FormResize(Sender: TObject);
begin
 LoadRatings;
 lstRatings.Repaint;
end;

end.

Figure 10 shows the Ratings2 app running on the iPhone Simulator. As you can see, the displayed data is much more visual and more importantly, it is much easier to quickly extract information about each item in the list. The use of symbols to convey rating values makes it much easier to compare items.
[image:]
Figure 10: Ratings 2 utilizing Custom List Items
Figure 11 shows the same app in landscape orientation. Notice how the additional ratings columns are visible and the Overall Score column has gotten wider.
[image:]
Figure 11: Ratings2 in Landscape showing additional ratings values
Although the display of Ratings2 has greatly improved, there are still some concerns. For example, the overall score just shows a filled bar and does not show the actual value of the score. It would be nice if actual score would be visible. Unfortunately, this is not possible because the TProgressBar does not support displaying text.
Furthermore, the visual effects illustrated in Figures 10 and 11 required a combination of custom styling and custom coding. Neither of which encourage reuse. In Ratings3, we will utilize two custom FM controls that will encapsulate the functionality of the rating icons and the score bar.
Ratings 3
Instead of creating custom styles in the StyleBook for the application, Ratings3 utilizes two new custom FM controls in the style RatingsListItem style. Figure 12 shows the immediate impact of this. Instead of TLabel controls displaying text until we change the StyleLookup property at runtime, the new TRkRatingIcon control is used and since it knows how to display the appropriate icon for a rating value, we can see this immediately. The TRkScoreBar is used in place of the TProgressBar and likewise, its display has been customized to what we want.
Both custom controls utilize the style settings that we created before in Ratings2, but rather than be added directly to the application’s StyleBook, the styles are contained in the custom control. Not only does the application’s StyleBook get simplified, the source code is simplified as well.
[image:]
Figure 12: Custom Item Style for Ratings 3
Listing 4 contains the source code for the main form of Ratings3. It is nearly identical to Ratings1 except that the style element names have changed because the TText controls for the ratings have been replaced with TRkRatingIcon controls, and the TProgressBar has been replaced with the TRkScoreBar. We no longer need to worry about changing the StyleLookup property of the individual ratings icons, because the custom control takes care of that for us.
The TRkRatingIcon has a Rating property, which the inherited Data property maps to, so that using the StylesData array property will correctly update the icon. Internally, the TRkRatingIcon looks at the Rating property value and uses the appropriate style for its display.
	Listing 4: Ratings3MainForm.pas

	unit Ratings3MainForm;

interface

uses
 System.SysUtils,
 System.Types,
 System.UITypes,
 System.Classes,
 System.Variants,
 FMX.Types,
 FMX.Objects,
 FMX.Controls,
 FMX.Forms,
 FMX.Dialogs,
 FMX.Layouts,
 FMX.ListBox,
 FMX.StdCtrls,
 Data.DB,
 Datasnap.DBClient,
 RkRatings;

type
 TfrmMain = class(TForm)
 lstRatings: TListBox;
 cdsRatings: TClientDataSet;
 CustomStyles3: TStyleBook;
 ListBoxHeader1: TListBoxHeader;
 Label2: TLabel;
 procedure FormCreate(Sender: TObject);
 procedure FormResize(Sender: TObject);
 private
 procedure LoadRatings;
 procedure ListItemApplyStyleLookupHandler(Sender: TObject);

 function FormIsPortrait: Boolean;
 public
 end;

var
 frmMain: TfrmMain;

implementation

{$R *.fmx}

uses
 iOSApi.UIKit;

const
 RatingsListItemStyleName = 'RatingsListItem';
 RatingsHeaderItemStyleName = 'RatingsHeaderItem';

 txtBrandStyleName = 'txtBrand';
 txtModelStyleName = 'txtModel';
 txtCostStyleName = 'txtCost';
 sbrOverallScoreStyleName = 'sbrOverallScore';
 icoChoppingStyleName = 'icoChopping';
 icoSlicingStyleName = 'icoSlicing';
 icoShreddingStyleName = 'icoShredding';
 icoPureeingStyleName = 'icoPureeing';
 icoGratingStyleName = 'icoGrating';
 icoNoiseStyleName = 'icoNoise';

 layOverallScoreStyleName = 'layOverallScore';
 layChoppingStyleName = 'layChopping';
 laySlicingStyleName = 'laySlicing';
 layShreddingStyleName = 'layShredding';
 layPureeingStyleName = 'layPureeing';
 layGratingStyleName = 'layGrating';
 layNoiseStyleName = 'layNoise';

procedure TfrmMain.FormCreate(Sender: TObject);
begin
 LoadRatings;
end;

procedure TfrmMain.LoadRatings;
var
 I: Integer;
 Item: TListBoxItem;
 L: TLabel;
begin
 lstRatings.Clear;

 // Add Header Item

 Item := TListBoxItem.Create(lstRatings);
 Item.Parent := lstRatings;
 Item.Height := 70;

 Item.OnApplyStyleLookup := ListItemApplyStyleLookupHandler;
 Item.StyleLookup := RatingsHeaderItemStyleName;

 // Add Product Items

 cdsRatings.First;
 for I := 1 to cdsRatings.RecordCount do
 begin
 Item := TListBoxItem.Create(lstRatings);
 Item.Parent := lstRatings;
 Item.Height := 50;

 Item.OnApplyStyleLookup := ListItemApplyStyleLookupHandler;
 Item.StyleLookup := RatingsListItemStyleName;

 Item.StylesData[txtBrandStyleName] := cdsRatings.FieldByName('Brand').AsString;
 Item.StylesData[txtModelStyleName] := cdsRatings.FieldByName('Model').AsString;
 Item.StylesData[txtCostStyleName] := '$' + cdsRatings.FieldByName('Cost').AsString;
 Item.StylesData[sbrOverallScoreStyleName] := cdsRatings.FieldByName('OverallScore').AsInteger;
 Item.StylesData[icoChoppingStyleName] := cdsRatings.FieldByName('Chopping').AsInteger;
 Item.StylesData[icoSlicingStyleName] := cdsRatings.FieldByName('Slicing').AsInteger;
 Item.StylesData[icoShreddingStyleName] := cdsRatings.FieldByName('Shredding').AsInteger;
 Item.StylesData[icoPureeingStyleName] := cdsRatings.FieldByName('Pureeing').AsInteger;
 Item.StylesData[icoGratingStyleName] := cdsRatings.FieldByName('Grating').AsInteger;
 Item.StylesData[icoNoiseStyleName] := cdsRatings.FieldByName('Noise').AsInteger;

 cdsRatings.Next;
 end;
end;

procedure TfrmMain.ListItemApplyStyleLookupHandler(Sender: TObject);
var
 Item: TListBoxItem;
 C: TControl;
 Portrait: Boolean;

 procedure UpdateStyleElement(Item: TListBoxItem; const StyleName: string; HideElement: Boolean);
 var
 C: TControl;
 begin
 C := Item.FindStyleResource(StyleName) as TControl;
 if C <> nil then
 C.Visible := not HideElement;
 end;

begin
 Item := TListBoxItem(Sender);

 Portrait := FormIsPortrait;

 C := Item.FindStyleResource(layOverallScoreStyleName) as TControl;
 if C <> nil then
 begin
 if Portrait then
 C.Width := 60
 else
 C.Width := 90;
 end;

 // Hide all ratings
 UpdateStyleElement(Item, layChoppingStyleName, True);
 UpdateStyleElement(Item, laySlicingStyleName, True);
 UpdateStyleElement(Item, layShreddingStyleName, True);
 UpdateStyleElement(Item, layPureeingStyleName, True);
 UpdateStyleElement(Item, layGratingStyleName, True);
 UpdateStyleElement(Item, layNoiseStyleName, True);

 // Show only those that apply to orientation
 UpdateStyleElement(Item, layNoiseStyleName, Portrait);
 UpdateStyleElement(Item, layGratingStyleName, False);
 UpdateStyleElement(Item, layPureeingStyleName, False);
 UpdateStyleElement(Item, layShreddingStyleName, Portrait);
 UpdateStyleElement(Item, laySlicingStyleName, False);
 UpdateStyleElement(Item, layChoppingStyleName, Portrait);
end;

function TfrmMain.FormIsPortrait: Boolean;
var
 Orientation: Cardinal;
begin
 Orientation := TUIApplication.Wrap(TUIApplication.OCClass.sharedApplication).statusBarOrientation;
 Result := not (Orientation in [UIDeviceOrientationLandscapeLeft, UIDeviceOrientationLandscapeRight]);
end;

procedure TfrmMain.FormResize(Sender: TObject);
begin
 LoadRatings;
 lstRatings.Repaint;
end;

end.

Figure 13 shows the Ratings3 application running in the iPhone Simulator. Like Ratings2, it shows icons for the ratings values, but unlike Ratings2, the custom TRkScoreBar allows the Overall Score column to show the actual score along with a visual bar. Plus the use of a background color for the score bar makes it much easier for users to visually compare bars.
[image:]
Figure 13: Ratings 3 Utilizing Custom Ratings Components
MandelFire
Back in the 1980s, as an undergrad, I did a research project on the Mandelbrot Set. As a Computer Science and Mathematics major, it was a very interesting project. The Mandelbrot set is a set of complex numbers which remain bounded when applied to a particular complex polynomial. The actual math involved in the Mandelbrot set is beyond the scope of this paper, but the representation of that set is definitely of interest. Complex numbers (a + bi) are often represented in a two-dimensional plane where the real part of the number is the x-coordinate, and the imaginary part is the y-coordinate. Using this approach, it is possible to visualize the Mandelbrot set.
The MandelFire application is designed to explore the Mandelbrot Set using the FM Application Platform. The MandleFire project group contains a Desktop application with Win32, Win64, and OSX targets. The project group also contains a Mobile application with iOS Simulator, and iOS Device targets.
Figures 14 and 15 show the main forms for the desktop and mobile applications, respectively. Aside from a title bar used in the mobile version, but forms utilize a TPaintBox to display the Mandelbrot Set. It should be noted that both forms are nearly identical in their layout and even their source code. However, in practice, it is usually better to use a layout that is optimized for a mobile device and a separate one for the desktop. The key will be to minimize any duplication of code, which is exactly what we will focus on in MandelFire.

[image:]
Figure 14: Main form for Desktop version of MandelFire
[image:]
Figure 15: Main form for Mobile version of MandelFire
Listing 5 shows the source code for the main form for the mobile version. The main form creates an instance of the TMandelbrotGenerator, a reusable class that will take care of all the math and generation of the image for the specified viewport. A viewport represents a window in the complex plane that defines the bounds of the calculations. The viewport is adjusted to zoom into specific regions of the set.
The key method in the main form is the pbxDisplayPaint event, which is where the bitmap image created by the FMandelbrotGenerator is displayed on the screen. The Canvas parameter to the OnPaint event handler is what we will use to display the image. However, even though the Canvas parameter is of type TCanvas, this is the FM TCanvas and not the VCL TCanvas. They are quite different under the hood.
Whenever we wish to display something on a canvas in FM, we need to call the BeginScene method first, and when we are finished, EndScene. In MandelFire, we simply call Canvas.DrawBitmap to draw the bitmap that was created by the FMandelbrotGenerator.
As an aside, it is nice to display the time it takes to generate the Mandelbrot Set. Generating the set is computationally intensive and back in the 80s it was not uncommon to take more than 20 minutes to generate a display. With today’s machines, even the mobile ones, it takes only a few seconds. Since this application targets multiple platforms, we need a way to perform timings that are platform independent. This is where the TStopWatch class comes in. It is part of the RTL and can be used to record time durations. What is nice is that the implementation details vary depending on the platform, so for on Windows machines, the QueryPerformanceCounter function is used, but on Mac, the mach_absolute_time value is used.
	Listing 5: MainForm.pas

	unit MainForm;

interface

uses
 System.SysUtils,
 System.Types,
 System.UITypes,
 System.Classes,
 System.Variants,
 System.Diagnostics,
 FMX.Types,
 FMX.Controls,
 FMX.Forms,
 FMX.StdCtrls,
 FMX.Objects,
 FMX.Layouts,
 MandelbrotGenerator;

type
 TfrmMain = class(TForm)
 Header: TToolBar;
 HeaderLabel: TLabel;
 rctSelection: TRectangle;
 pbxDisplay: TPaintBox;
 laySidePanel: TLayout;
 Rectangle1: TRectangle;
 txtTitle: TText;
 Layout1: TLayout;
 Text1: TText;
 Layout2: TLayout;
 lblMinM: TText;
 txtMinM: TText;
 Layout3: TLayout;
 Text2: TText;
 txtMaxN: TText;
 Layout4: TLayout;
 Text4: TText;
 txtMaxM: TText;
 Layout5: TLayout;
 Text6: TText;
 txtMinN: TText;
 Text3: TText;
 lblGenerationTime: TLabel;
 Layout6: TLayout;
 btnBack: TButton;
 btnReset: TButton;
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure pbxDisplayPaint(Sender: TObject; Canvas: TCanvas);
 procedure pbxDisplayMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);
 procedure pbxDisplayMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Single);
 procedure pbxDisplayMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);
 procedure btnResetClick(Sender: TObject);
 private
 FGenerator: TMandelbrotGenerator;

 FGeneratingSet: Boolean;
 FZoomStartX: Single;
 FZoomStartY: Single;

 FStopWatch: TStopWatch;

 procedure GenerateMandelbrotSet;
 procedure UpdateViewportStatus;
 public
 end;

var
 frmMain: TfrmMain;

implementation

{$R *.fmx}

{======================}
{== TfrmMain Methods ==}
{======================}

procedure TfrmMain.FormCreate(Sender: TObject);
begin
 FStopWatch := TStopWatch.Create;

 FGenerator := TMandelbrotGenerator.Create(Trunc(pbxDisplay.Width), Trunc(pbxDisplay.Height));

 GenerateMandelbrotSet;
end;

procedure TfrmMain.FormDestroy(Sender: TObject);
begin
 FGenerator.Free;
end;

procedure TfrmMain.GenerateMandelbrotSet;
begin
 UpdateViewportStatus;
 FGeneratingSet := True;
 try
 FStopWatch.Reset;
 FStopWatch.Start;

 FGenerator.Generate;

 FStopWatch.Stop;
 finally
 FGeneratingSet := False;
 end;

 lblGenerationTime.Text := Format('%d ms', [FStopWatch.ElapsedMilliseconds]);

 pbxDisplay.Repaint;
end;

procedure TfrmMain.pbxDisplayPaint(Sender: TObject; Canvas: TCanvas);
var
 R: TRectF;
begin
 if FGeneratingSet then
 Exit;

 R := RectF(0, 0, FGenerator.Width, FGenerator.Height);

 if Canvas.BeginScene then
 try
 Canvas.DrawBitmap(FGenerator.Bitmap, R, R, 1.0);
 finally
 Canvas.EndScene;
 end;
end;

{== Zooming ==}

procedure TfrmMain.pbxDisplayMouseDown(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);
begin
 FZoomStartX := X;
 FZoomStartY := Y;
end;

procedure TfrmMain.pbxDisplayMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Single);
var
 DeltaX, DeltaY: Single;
begin
 if ssLeft in Shift then
 begin
 DeltaX := X - FZoomStartX;
 DeltaY := 5 * DeltaX / 6;

 if (DeltaX > 0) and (DeltaY > 0) then
 begin
 rctSelection.SetBounds(pbxDisplay.Position.X + FZoomStartX, pbxDisplay.Position.Y + FZoomStartY, DeltaX, DeltaY);
 rctSelection.Visible := True;
 end;
 end;
end;

procedure TfrmMain.pbxDisplayMouseUp(Sender: TObject; Button: TMouseButton; Shift: TShiftState; X, Y: Single);
begin
 rctSelection.Visible := False;

 if FGenerator.Zoom(FZoomStartX, FZoomStartY, X, Y) then
 GenerateMandelbrotSet;
end;

procedure TfrmMain.btnResetClick(Sender: TObject);
begin
 FGenerator.ResetViewport;
 GenerateMandelbrotSet;
end;

procedure TfrmMain.UpdateViewportStatus;
begin
 txtMinM.Text := Format('%.18f', [FGenerator.Viewport.MinM]);
 txtMinN.Text := Format('%.18f', [FGenerator.Viewport.MinM]);
 txtMaxM.Text := Format('%.18f', [FGenerator.Viewport.MaxM]);
 txtMaxN.Text := Format('%.18f', [FGenerator.Viewport.MaxN]);
end;

end.

Listing 6 shows the source code for the MandelbrotGenerator unit. The unit contains two classes: TMandelbrotViewport and TMandelbrotGenerator. The TMandelbrotViewport is a simple class to manage the boundaries used for calculations in the complex plane. The TMandelbrotGenerator class is responsible for performing the necessary calculations and generating a hi-resolution image representing the current viewport.
The Mandelbrot Set is generated by taking each point in the current viewport and plugging it into a calculation and monitoring the results and then repeating if necessary. The number of iterations that are used for a given point is used to colorize the pixel representing that point.
This leads to two important tasks that the TMandelbrotGenerator must handle. The first is the generation of a color palette. With any hi-resolution imaging visualization, the choice of color palette is crucial. The second task is the ability to manipulate the individual pixels of the bitmap to be generated.

	Listing 6: MandelbrotGenerator.pas

	unit MandelbrotGenerator;

interface

uses
 System.Types,
 System.UITypes,
 FMX.Types,
 FMX.Colors;

type
 TMandelbrotViewport = class
 private
 FMinM: Double;
 FMaxM: Double;
 FMinN: Double;
 FMaxN: Double;
 public
 constructor Create;
 procedure Initialize;

 procedure SetBounds(MinM, MinN, MaxM, MaxN: Double);

 property MinM: Double
 read FMinM
 write FMinM;

 property MaxM: Double
 read FMaxM
 write FMaxM;

 property MinN: Double
 read FMinN
 write FMinN;

 property MaxN: Double
 read FMaxN
 write FMaxN;
 end;

 TMandelbrotGenerator = class
 private
 FWidth: Integer;
 FHeight: Integer;

 FBitmap: TBitmap;

 FViewport: TMandelbrotViewport;
 FMaxIterations: Integer;
 FMaxColors: Integer;

 FColorPalette: array of TAlphaColor;

 procedure InitializeColorPalette;
 procedure InitializeGradient(G: TGradient);

 public
 constructor Create(Width, Height: Integer);
 destructor Destroy; override;

 procedure Generate;

 procedure ResetViewport;
 function Zoom(OrigX, OrigY, X, Y: Single): Boolean;

 property Bitmap: TBitmap
 read FBitmap;

 property Width: Integer
 read FWidth;

 property Height: Integer
 read FHeight;

 property Viewport: TMandelbrotViewport
 read FViewport;
 end;

implementation

uses
 System.SysUtils,
 System.UIConsts,
 FMX.PixelFormats;

{=================================}
{== TMandelbrotViewport Methods ==}
{=================================}

constructor TMandelbrotViewport.Create;
begin
 inherited;
 Initialize;
end;

procedure TMandelbrotViewport.Initialize;
begin
 FMinM := -2.25;
 FMaxM := 0.75;

 FMinN := -1.25;
 FMaxN := 1.25;
end;

procedure TMandelbrotViewport.SetBounds(MinM, MinN, MaxM, MaxN: Double);
begin
 FMinM := MinM;
 FMaxM := MaxM;

 FMinN := MinN;
 FMaxN := MaxN;
end;

{==================================}
{== TMandelbrotGenerator Methods ==}
{==================================}

constructor TMandelbrotGenerator.Create(Width, Height: Integer);
begin
 FWidth := Width;
 FHeight := Height;

 FBitmap := TBitmap.Create(FWidth, FHeight);

 FMaxIterations := 512;

 InitializeColorPalette;
 FViewport := TMandelbrotViewport.Create;
end;

destructor TMandelbrotGenerator.Destroy;
begin
 FViewport.Free;
 FBitmap.Free;
 inherited;
end;

procedure TMandelbrotGenerator.ResetViewport;
begin
 FViewport.Initialize;
end;

function TMandelbrotGenerator.Zoom(OrigX, OrigY, X, Y: Single): Boolean;
var
 DeltaX, DeltaY: Single;
 W, H: Double;
begin
 DeltaX := X - OrigX;
 DeltaY := 5 * DeltaX / 6;

 if DeltaX > 3 then
 begin
 X := OrigX + DeltaX;
 Y := OrigY + DeltaY;

 W := FViewport.MaxM - FViewport.MinM;
 FViewport.MinM := FViewport.MinM + OrigX * W / FBitmap.Width;
 FViewport.MaxM := FViewport.MaxM - (FBitmap.Width - X) * W / FBitmap.Width;

 H := FViewport.MaxN - FViewport.MinN;
 FViewport.MinN := FViewport.MinN + (FBitmap.Height - Y) * H / FBitmap.Height;
 FViewport.MaxN := FViewport.MaxN - OrigY * H / FBitmap.Height;

 Result := True;
 end
 else
 Result := False;
end;

procedure TMandelbrotGenerator.Generate;
var
 X, Y, I, K: Integer;
 DeltaX, DeltaY, NewM, NewN: Double;
 M, N, A, B: Double;
 BitmapData: TBitmapData;
begin
 DeltaX := (FViewport.MaxM - FViewport.MinM) / FBitmap.Width;
 DeltaY := (FViewport.MaxN - FViewport.MinN) / FBitmap.Height;

 if FBitmap.Map(TMapAccess.maReadWrite, BitmapData) then
 try
 for X := 0 to FBitmap.Width - 1 do
 begin
 for Y := 0 to FBitmap.Height - 1 do
 begin

 A := FViewport.MinM + DeltaX * X;
 B := FViewport.MaxN - DeltaY * Y;
 M := 0;
 N := 0;
 K := 0;

 for I := 1 to FMaxIterations do
 begin
 if (M * M + N * N) > 4 then
 Break;

 NewM := M * M - N * N + A;
 NewN := 2 * M * N + B;
 M := NewM;
 N := NewN;
 Inc(K);
 end;

 if K < FMaxIterations then
 K := K mod FMaxColors
 else
 K := 0;

 BitmapData.SetPixel(X, Y, FColorPalette[K]);
 end;
 end;
 finally
 FBitmap.Unmap(BitmapData);
 end;
end;

procedure TMandelbrotGenerator.InitializeColorPalette;
var
 G: TGradient;
 Bmp: TBitmap;
 BmpData: TBitmapData;
 R: TRectF;
 H: Integer;
begin
 FMaxColors := 128;
 H := 10; // H must be > 8 otherwise, in iOS, GetScanline does not work correctly

 Bmp := TBitmap.Create(FMaxColors, H);
 R := RectF(0, 0, FMaxColors, H);

 G := TGradient.Create;
 try
 InitializeGradient(G);

 // Fill the TBitmap Bmp using the TGradient G defined above

 Bmp.Canvas.BeginScene;
 try
 Bmp.Canvas.Fill.Gradient := G;
 Bmp.Canvas.Fill.Kind := TBrushKind.bkGradient;
 Bmp.Canvas.FillRect(R, 0.0, 0.0, AllCorners, 1.0);
 finally
 Bmp.Canvas.EndScene;
 end;

 // Use the Scanline from the Bmp to populate the FColorPalette

 SetLength(FColorPalette, FMaxColors);

 if Bmp.Map(TMapAccess.maRead, BmpData) then
 try
 ScanlineToAlphaColor(BmpData.GetScanline(0), FColorPalette, FMaxColors, Bmp.PixelFormat);
 FColorPalette[0] := TAlphaColors.Black;
 finally
 Bmp.Unmap(BmpData);
 end;

 finally
 G.Free;
 Bmp.Free;
 end;
end;

procedure TMandelbrotGenerator.InitializeGradient(G: TGradient);
var
 GP: TGradientPoint;
begin
 G.Points.Clear;

 // Add new points for each color change in the gradient

 {$IFNDEF IOS}

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(5, 5, 80);
 GP.Offset := 0.0;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(85, 167, 249);
 GP.Offset := 0.08;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(255, 255, 215);
 GP.Offset := 0.25;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(255, 235, 80);
 GP.Offset := 0.38;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(255, 155, 0);
 GP.Offset := 0.53;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(150, 0, 0);
 GP.Offset := 0.75;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(5, 5, 80);
 GP.Offset := 1.0;

 {$ELSE}

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(5, 5, 80);
 GP.Offset := 0.0;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(85, 167, 249);
 GP.Offset := 0.33;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(255, 235, 80);
 GP.Offset := 0.66;

 GP := TGradientPoint(G.Points.Add);
 GP.Color := MakeColor(150, 0, 0);
 GP.Offset := 1.0;

 {$ENDIF}

 // Use StartPosition and StopPosition to specify the gradient angle

 G.StartPosition.Point := PointF(0, 0.5);
 G.StopPosition.Point := PointF(1, 0.5);

end;

end.

The color palette is generated in the InitializeColorPalette method and uses the built-in gradient support of FM to create a visually stunning color palette. The technique that is used is to create a temporary bitmap and then use the TGradient to fill that bitmap. Then we can take the individual colors of the pixels in the bitmap. There are a couple notes regarding the TGradient class in FM. First, the height of the temporary bitmap must be greater than 8. If not, on an iOS device, the extracting of the pixel color values will not work. The second is that on iOS devices, TGradient only supports 4 color points. This is illustrated in the InitializeGradient method.
Both the InitializeColorPalette method and the Generate method need to access the individual pixels of their respective TBitmap objects. However, unlike the VCL, the TBitmap class in FM does not provide access to the pixels. In order to access the individual pixels, we need to use a TBitmapData object. To obtain a TBitmapData object for a given bitmap, we use the TBitmap.Map function. With the TBitmapData object, when then have access to methods such as SetPixel and GetScanline. When we are done manipulating the bitmap, we need to call TBitmap.Unmap.
Figures 16 through 19 show the MandelFire application running on desktop and mobile devices. They also illustrate the effects of zooming into a particular region of the complex plane to generate a new fractal image.
[image:]
Figure 16: MandelFire running on Desktop
[image:]
Figure 17: Zooming in on Desktop MandelFire
[image:]
Figure 18: MandelFire running on iPad Mobile Device
[image:]
Figure 19: Zooming in on mobile MandelFire.
[bookmark: _GoBack]Resources
Books
There are many books available that cover various aspects of data visualization. The following list is notable in that the collection covers a wide variety of topics. Designing Data Visualizations is a great book for those starting out. It is a concise book that gets right to the point and provided a solid foundation of terminology and concepts that are involved with visualizing data. Visual Explanations is a classic read by a world-renowned data visualization expert. The book covers a wide variety of subjects and is not limited to just computer generated visualizations. Stephen Few’s books are loaded with many practical examples.
Designing Data Visualizations
Noah Iliinsky & Julie Steele
Visual Explanations
Edward R. Tufte
Show Me the Numbers (Designing Tables and Graphs to Enlighten)
Stephen Few
Information Dashboard Design: Displaying Data for at-a-glance Monitoring
Stephen Few
Websites
A simple web search shows that there are many sites out there dedicated to data visualization and infographics. The following list is a short sample of some of the most interesting.
http://visualization.geblogs.com
http://infosthetics.com
http://visual.ly/learn
http://flowingdata.com
http://www.informationisbeautiful.net
http://visualisingdata.com
http://www.census.gov/dataviz

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image1.png

image2.png

image3.png

image4.png

image5.png

